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Abstract 

In this paper, we have two goals. First, we try to identify the stock market states and outline their statistical 

properties by using Multi-states Duration-Dependence Markov-switching models. Results show that the 

three-state model outperforms other models. An application to Tunisian stock market reveals that there 

exists three different states and each state represents different features of Tunisian stock market. Second, 

we construct a turning index based on the smoothed probabilities in order to identify the different Tunisian 

market cycle phases. The relevance of our index was documented from the synchronization between the 

values of the turning index and the values of TUNINDEX index return. It is well-adapted in order to 

account for extreme events. 

 

Key Words: Duration-Dependence; Risk-Return Trade-off; Tunisian Stock Market; Markov-Switching 

Model; Turning index. 

 

 

Introduction 
 

Identifying the precise moments when the stock market bounces back provides insider information for 

everyone who pays attention to the short-term evolution of the stock market. Detecting and predicting these 

turning points allow to alert investor to implement an investment strategy to limit the impact of slowdown 

or recession phases or otherwise profit from acceleration or expansion phases.   

 

But, when referring to the empirical analysis of cyclical movements, some confusion about the definition of 

cycle phases and the complex temporal behavior of financial time series are well-documented. In this 

respect, it has been shown that financial time series of high frequency such as daily or weekly stock series 

display a range of seeming features common across a wide range of instruments, markets and time periods. 

These empirical and statistical properties are called stylized facts such as volatility clustering, high kurtosis, 

long memory, fat-tailed densities, and nonlinear structure in returns. Among these properties, volatility 

clustering emerges, as reported by Mandelbrot (1963), when “large changes tend to be followed by large 

changes, of either sign, and small changes tend to be followed by small changes”. As a result, absolute 

returns or their squares show a positive, significant and slowly decaying autocorrelation function (Cont, 

2001). To study this phenomenon, a large class of stochastic models was developed in finance. Especially, 

GARCH models and stochastic volatility models are mainly appointed to model the volatility clustering 

(e.g. Engle, 1995; Bollerslev et al., 1992). Many enhancements of classical GARCH models add 

complexity in order to grasp the volatility of financial markets and capture the clustering volatility 
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phenomenon. In this respect, the GARCH-in Mean (GARCH-M) model proposed by Engle, Lilien and 

Robins (1987) attempts to model the relationship between the conditional mean return and variance (risk). 

Formally, the GARCH-M model adds the heteroskedasticity term into mean return equation.    

 

Likewise, a great deal of attention has been paid to the non-linear structure and cyclical behavior of stock 

returns. To capture and reproduce this feature, Markov-switching models of Hamilton (1989) have become 

extensively used to highlight regime shifts behavior in both the mean and the variance according to a latent 

state variable St, which takes on a finite number of values. However, the Markov-switching model of 

Hamilton (1989) does not account for the duration dependence in nonlinear dynamics of the stock returns. 

The Markov-switching framework was later generalized to allow for time-varying, duration-dependent and 

seasonally dependent transition probabilities (e.g. Durland and McCurdy, 1994; Chen and Shen, 2006). As 

such, Chen and Shen (2006) adopt a Markov-switching model with a duration dependence structure in 

transition probabilities in order to study the duration dependence feature of Taiwan‟s business cycles. The 

results prove different periods of contraction and expansion characterizing by (or no) dependence duration. 

Maheu and McCurdy (2000) used Duration-Dependence Markov-Switching model to detect high return 

stable state (bull market) and low return-volatile state (bear market). By incorporating the duration 

dependence, they found that the best profit is maked at the beginning of the bull market and volatility 

grows over the duration of a bear market. Woodward and Marisetty (2005) argue that the length of time 

spent in the bear and bull market state may be a primary determinant in order to clarify the risk-return 

trade-off of risky assets. This reflects the importance of the duration of a particular market condition when 

measuring risk.   

 

In this context, several researchers retain two-state specification as provided in traditional classifying of 

stock markets into two regimes labeled bear and bull markets (e.g. Maheu and McCurdy, 2000). For 

example, Gordon and St. Amour (2000) used two-state Markov-switching model in order to capture the 

moderate and infrequent movements in risk aversion and the cyclical nature of observed asset prices. 

Nonetheless, more states could be used to allow a rich description of intrastate dynamics. Guidolin and 

Timmermann (2005) show that three-state specification captures key features of UK stock and bond 

returns. Given these different features, the Markov-Switching are intensely used as dating method
1
 of the 

stock market cycles. Under these models, the different states are determined using the marginal transform 

 such that  =  where  is 1…..j (j is the number of state). 

 

This study lies in the same perspective and attempts to provide a probabilistic lecture of Tunisian
2
 stock 

market cycle based on a turning index from the estimation of three-state Duration-Dependence Markov-

Switching L
th 

order Autoregressive Duration-Dependence GARCH-M (DD(τ)-MS(3)-AR(L)-DD(τ)-

GARCH-M(1,1)) model on the TUNINDEX stock index weekly returns during January 07, 1998 till March 

29, 2013. From a methodology perspective, the proposed model consist of an extension of Maheu and 

                                                 
1 The traditional method of identifying the stock market phases are the dating algorithms based on a set of rules for 

classification such as in Lunde and Timmermann (2004) and Pagan and Sossounov (2003). A drawback of the dating 

algorithm is that it cannot be used for statistical inference on returns or for investment decisions which require more 

information from the return distribution (Maheu et al., 2012). 
2 An interesting question is to determine if cyclical regimes are more pronounced in emerging markets. Emerging 

markets are the more obvious candidates for detecting and identifying changes in cyclical stock market synchronization 

by virtue to rapid transformations of their financial systems (Candelon et al., 2008) and the transformations instability 

when facing exceptional difficult conditions. The Tunisian case provides a good example since the country‟s revolution 

had the adverse consequences on the economy. During January 2011, the TUNINDEX index is closed with loss of 

about 13.29% and the trading on Tunisian stock market was halted for two weeks. Since the outbreak of the popular 

uprising, tourism, Tunisia‟s largest sources of foreign currency, has fallen by more than 50%. Foreign direct investment 

has dropped by 20% and more than 80 foreign companies have left the Tunisian economy. Meanwhile, the depreciation 

of the Tunisian dinar as well as the budget and current account deficits have deeply increased. These hostile national 

conditions have accompanied by a lack of liquidity and a high cost of external financing due to the downgrading of 

sovereign debt ratings. We therefore use Tunisian stock market data in our empirical application. 
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McCurdy (2000)‟s model in three directions: (i) we add an additional state in order to highlight the 

nonlinear dynamics of index returns; (ii) we examine the duration dependence in the conditional mean 

return, volatility, risk-return trade-off and the transition probabilities and (iii) we take into account 

concurrently the GARCH and duration dependence effects in the volatility equation.  

 

This paper has the following contents: The model is developed in section 2. In section 3, the financial 

dataset used for empirical application is presented. The different estimation results are provided in section 

4. Section 5 is devoted to exhibit the calculation results of the index turning while the discussion is reported 

in the sixth section. Concluding remarks are contained in Section 6. 

 

Model Development  
 

The nonlinearities we hope to examine through this modeling encompass asymmetric cycles and time 

variation in the conditional moments of stock returns. We use a three-state Duration-Dependence Markov-

Switching L
th 

order Autoregressive Duration-Dependence GARCH-M (DD(τ)-MS(3)-AR(L)-DD(τ)-

GARCH-M(1,1)) model. Duration dependence is emphasized in the conditional mean return, volatility, 

risk-return trade-off as well as the transition probabilities. 

 

At each time t, the return series is assumed to belong to one of three regimes
3
. Let  denote a latent 

variable which takes the values {1, 2, 3}. The transition dynamics between the three regimes is described 

by a homogeneous semi-Markov process. According to this process, transition intensities depend on 

duration which expressed by a latent variable . In other words,  is the number of successive periods 

recently spent in the same regime: 

                                   




 




otherwise

SS tt

1

if1D
D

*

1

*

S

S

*
1-t

*
t

                                                            

(1.1)

 
As stated by Maheu and McCurdy (2000), the transition probabilities are parameterized using the logistic 

function. For each regime i    (i = 1, 2, 3), the transition probabilities are specified conditionally on as 

follows: 

 

𝑝𝑖𝑗
𝑑 = Pr 𝑆𝑡

∗ = 𝑗 𝑆𝑡−1
∗ = 𝑖; 𝐷𝑆𝑡−1

∗ = 𝑑              

=
𝑒𝑥𝑝 𝜆1

𝑖𝑗
+ 𝜆2

𝑖𝑗
(𝑑𝐼 𝑑≤𝜏 + 𝜏𝐼 𝑑>𝜏 ) 

1 + exp 𝜆1
𝑖𝑗

+ 𝜆2
𝑖𝑗

(𝑑𝐼 𝑑≤𝜏 + 𝜏𝐼 𝑑>𝜏  + 𝑒𝑥𝑝 𝜆1
𝑖𝑘 + 𝜆2

𝑖𝑘 (𝑑𝐼 𝑑≤𝜏 + 𝜏𝐼 𝑑>𝜏 ) 
                      (1.2) 

𝑝𝑖𝑘
𝑑 = Pr 𝑆𝑡

∗ = 𝑘 𝑆𝑡−1
∗ = 𝑖; 𝐷𝑆𝑡−1

∗ = 𝑑      

=
𝑒𝑥𝑝 𝜆1

𝑖𝑘 + 𝜆2
𝑖𝑘 (𝑑𝐼 𝑑≤𝜏 + 𝜏𝐼 𝑑>𝜏 ) 

1 + exp 𝜆1
𝑖𝑗

+ 𝜆2
𝑖𝑗

(𝑑𝐼 𝑑≤𝜏 + 𝜏𝐼 𝑑>𝜏  + 𝑒𝑥𝑝 𝜆1
𝑖𝑘 + 𝜆2

𝑖𝑘(𝑑𝐼 𝑑≤𝜏 + 𝜏𝐼 𝑑>𝜏 ) 
                  (1.3) 

4
 

                                                 
3 The choice of the three states is justified a posteriori using the Likelihood-ratio test proposed by Hansen (1992, 

1996) and Garcia (1998) for Markov-switching models and AIC, BIC and HQIC information criteria. 
4
 I(d≤) and I(d>) refer two dummy variables :                                   

   
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According to the duration models, the probabilities and  refer to hazard functions. They reflect the 

instantaneous probability to change from the regime i to regimes j and k given that the regime i has spent d 

periods. Nevertheless, it is possible that there is no a regime change during other periods. The later 

situation which appoints the regime persistence is considered as a possible destination: 

 
d

ik

d

ij

d

ii pp1p       (1.4) 

 

The effect of duration on the hazard functions (or transition probabilities) is especially recapped by the 

coefficients .and ik
2

ij
2 

 
If one of these coefficients is significantly different from zero the hazard functions 

depend to the seniority of regime i. This dependence is so-called positive (resp. negative) when these 

coefficients are more positive (resp. negative). In this regard, the hazard functions are increasing (resp. 

decreasing) depending on the age of regime i. Furthermore, the level of persistence in the regime i is 

decreasing (resp. increasing) with duration. By assumption, this level becomes constant beyond the horizon 

of  periods. According to Durland and McCurdy (1994) and Maheu and McCurdy (2000), the parameter  

refers to the memory of duration dependence
5
. 

 

Formally, our DD(τ)-MS(3)-AR(L)- DD(τ)-GARCH-M(1.1) model
6
 may be written as :  
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and  

   ,,0 tt ShNID  

where: 

 Rt: Market index return at time t; 

 Yt : (Rt,Rt-1,…,R1), the market index return‟s vector for periods t, t-1, ..., 1; 

                                                 
5 Given that the parameter  can take only discrete value, it is chosen  (i.e. grid search method) to  maximize the log-

likelihood function starting from . 
6 A statistical approach is used in order to justify the relevance of adopted specification. First, the series of 

TUNINDEX index weekly returns was tested for stationarity by applying Augmented Dickey-Fuller and Phillips-

Perron test. To determine secondly the order of AR(p) process to depict the dynamic behavior of returns through AIC 

and BIC information criteria. The actual values of the autocorrelations and partial autocorrelations and the Ljung-Box 

test results for filtered weekly series (i.e. the series of residuals provided by adjusting the series of returns by ARIMA 

model) are thirdly used. Finally, the Lagrange multiplier test is established to analyze ARCH effect in the filtered 

series. The choice of the three states is justified a posteriori using the Likelihood-ratio test proposed by Hansen (1992, 

1996) and Garcia (1998), information criteria and MSC criterion for Markov-switching models. 
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 St: {1, 2, 3, ..., N}, a “N states” latent variable, according to a first-order Markov chain characterized by 

the following property :  

 

Pr St = n/St−1 = m, … , Yt−1 = Pr St = n/St−1 = m, Yt−1 = pnm  

 n, m = {1, 2, 3, …, N} ;        (1.10) 

  1-tt n /YPr S , n = {1, 2,…, N}, smoothed probabilities‟ vector, which expressed, for any time t, the 

unconditional probabilities of states occurrence, knowing all the information up to time t-1. 

 

Each realization of the variable St refers to a possible (L + τ) length trajectory of DD(τ)-MS(3)-AR(L)- 

DD(τ)-GARCH-M(1.1) process. By construction, the path is identified to a vector of weekly situations 

depicting the  variables dynamics over the temporal spells of (L + τ) periods (week). The 

variable 
)(S*

t

I  indicated the paths achieving to the same situation 
*

tS at the end of spell
7
.  

 

The equation (1.5) above indicates the market index return‟ evolution that is governed by an L order 

autoregressive process. In this paper, the Ljung-Box (1978) test is applied to the standardized residuals of 

the equation (1.5) to pronounce on the L autoregressive order. The error terms of the return equation are 

unobserved because the regimes are unobservable. Therefore, according to Dueker (1997) and Maheu and 

McCurdy (2000), we retain for this test the standardized expected residuals
8
: 
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Moreover, we expressed the autoregressive terms of the volatility equation in line with the k-tε
~

and 

)(S

1-t

*
1th

~
  terms rather than the k-tε and ,h

)(S
1-t

1-t respectively. 

 

Equations (1.5) and (1.6) indicated that the conditional mean and variance can change with duration. This 

provides us to analyze dynamic behavior for the mean and the variance within each state. The exponential 

form adopted in equation (1.6) is likely to ensure the positivity of the conditional variance. The equation 

(1.5) can elucidate the nature of the relationship between return and risk (i.e. risk-return trade-off) at each 

through the link between the conditional mean and variance.  

 

Data 
 

The data set, that will be used for empirical application, consists of weekly returns calculated from the 

Tunisian Stock Exchange, covering the period from 07/01/1998 to 29/03/2013. We thus have 931 

observations. 

 

Descriptive statistics for the data are provided in Table 1 while figure 1 plots the weekly returns for our 

sample.  

 

                                                 
7
 Appendix I reports how to construct these paths and exhibits a maximum Likelihood procedure for 

estimating the parameters of the model. 
8
 Under these conditions, the Ljung-Box (1978) test results can be used as an indication because the 

asymptotic distribution of the statistics is unknown. 
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Table 1. Descriptive Statistics of the TUNINDEX Weekly Return Data 

 07 Jan 1998-23 Mar 2013 

Mean   0.1668 
Median  0.0864 

Minimum  -10.9427 
Maximum 9.3009 

Standard Deviation  1.38022 
Skewness -0.0749 (0.080) 
Kurtosis                                 12.4102 (0.160)*** 

Jarque-Bera 
Probability 

5905.241 
    0.000000 

                Notes : - Summary statistics for TUNINDEX index returns from 07/01/1998 to 23/03/2013; 

                            - Standard errors are displayed as (.); -***: Significance level at 1%. 

 

As reported in table 1, the TUNINDEX index weekly returns vary between -10.9427% and 9.3009%. The 

mean weekly TUNINDEX return is 0.1668% and the return standard deviation is 1.3802%. These 

descriptive statistics show high volatility which marks the TUNINDEX index weekly evolution. These 

values are also a reflection of strong stock price fluctuations on the Tunisian stock market
9
.  

 

As a result of the excess volatility, the return distribution for TUNINDEX index is characterized by a 

large number of extreme values. Figure 1 reports the boxplot for return distribution. At first sight, figure 1 

displays mainly three blocs which allow us to identify a priori three different states. This suggests also the 

non-normality of the data set. The TUNINDEX index weekly returns are leptokurtic and exhibit fat tail 

phenomenon. The Jarque–Bera statistic points out the departure from normality for all return series at the 

1% level of significance. 

 

 
 

 

To examine the linear dependence of stock returns, we use the modified Ljung-Box Q statistic. The Q 

statistic is significantly different from zero for different lags. These results indicate the presence of the 

linear autocorrelations in TUNINDEX index returns series. Besides, the adequacy of the model 

                                                 
9
 This apparent feature of the data set is illustrated thereafter from the green curve reported in figure 5. 

Figure 1. Boxplot 
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specification is attested through analysis of disturbances in the observable variables. We apply the BDS test 

to filtered data (i.e. the residual series estimated from ARMA model)
10

 in order to examine the presence of 

nonlinear dependence in the Tunisian index returns series. The BDS statistic is significantly different from 

zero for different values of m and ε. This shows the nonlinearity in the returns. Finally, the value of 

Lagrange multiplier statistic of 362.209 is beyond 6.83 (the critical value of (1) at the significance level 

of 1%). This displays the ARCH effect in the filtered series. The GARCH models may be more appropriate 

for modeling volatility. 

 

Estimation Results 
 

To search adequate specifications for reproducing the TUNINDEX index‟s nonlinear dynamics over 

07/01/1998-29/03/2013, we examine four models which differ mainly by the number of regimes. To 

progress, we first estimated single-regime model (M1) with AR(2) specification for the mean return 

equation and a GARCH(1,1) specification for the volatility equation. In this paper, we consider the model 

M1 as the benchmark model. The coefficients estimated by the maximum likelihood method are provided 

in the second column of Table 3.The estimates of coefficients‟ standard deviations are given in parentheses. 

The significance of all coefficients leads us immediately to reject the random walk hypothesis in order to 

describe the evolution of the TUNINDEX index weekly returns‟ fluctuations. In particular, the significant 

level of  coefficient (related to the part of autoregressive GARCH process) already gives us the 

conviction of nonlinear process. Given a quadratic parameterization of the conditional variance, the 

GARCH type specification is limited uniquely to study the non-linearity in the volatility equation. In this 

context, the multistate models that analyze jointly the non-linearity effects on the mean and the volatility 

are: the two-state DD-MS-GARCH-M model (M2), the three-state DD-MS-GARCH-M model (M3) and 

the four-state DD-MS-GARCH-M model (M4). 

 

Determination of the Number of States 

 

Determining the number of states poses generally substantial difficulties, yet is clearly important to 

understanding the properties of the stock return process. To select a model specification, we use standard 

information criteria (AIC, BIC, HQIC) and the Likelihood Ratio test. We also employ the Markov 

Switching Criterion (MSC) proposed by Smith et al. (2006). The MSC criterion is based on the divergence 

of Kullback-Leibler to choose the number of states in the multi-state Markov-switching model.  

 

Table 2. Log-likelihood, Information Criteria and Likelihood Ratio Test for Different Models 

Model
(g)

 lgl
(a)

 k
(b)

 AIC
(c)

 BIC
(d)

 HQIC
(e)

 MSC LR test
(f)

 

M1 -975.167 5 2.1056 2.1316 2.1155 1953.334 - 

M2 -787.255462 21 1.7363 1.8454 1.7779 2512.511 375.823 

M3 -195.918109 37 0.5004 0.0112 0.5737 1339.836 1182.675 

M4 NC 51 - - -  - 
 

Notes: - (a): Log-likelihood value; 

            - (b): Number of parameters; 

            - (c), (d) and (e): The Akaike, Schwartz and Hannan-Quinn information criteria, respectively; 

            - (f): Likelihood ratio test;   

            - (g):The model M1 refers to single-state model with an AR(2) specification for the mean return 

equation and a GARCH-M(1,1) specification for the volatility equation.  

                                                 
10 The Box-Pierce test results display that we can limit to the second-order autoregressive model in order to estimate 

no-correlated residuals.  
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The models M2 and M3 pertain to the two-state and three-state models, respectively. For reasons of 

misspecification resulting in the non-convergence of the estimation algorithm, the model M4 did not hold 

in this paper. 

We suggest that at least two states and probably three states are needed to model asset returns. Consistent 

with this we found that a single-state model was systematically rejected in likelihood ratio test. To further 

support our choice of model we considered the AIC, HQIC and BIC information criteria and found that a 

three-state specification is suitable for the weekly return series. The lowest value of MSC for three-state 

model indicates that the three-state specification was preferred.  

 

Interpretation of the States 

 

Estimates for our proposed three-state DD-MS-GARCH-M model are provided in the last column of table 

3. Estimates of the parameters as well as the coefficients of transition probabilities equation (i.e. eq. 1.2 and 

1.3) is obtained by means of the method of maximum likelihood. 

 

Table 3. Estimation Results of the Models  

      Parameters Benchmark Model 
DD()-MS(3)-AR(2)- DD()-

GARCH-M (1,1) Model 
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0.0018 (0.0032)*** 

 

 

 

-0.0160 (0.0017)*** 

 

 

 

0.0422 (0.0128)** 

 

 

0.9323 (0.0201) *** 

-2.1525 (0.0315) *** 

-0.6733 (0.0205) *** 

 

-0.1627 (0.0119) *** 

0.0216 (0.0079) *** 

0.2574 (0.0088) *** 

 

0.6183 (0.0065) *** 

0.6382 (0.0133) *** 

0.3789 (0.0047) *** 

 

0.3349 (0.0146) *** 

-0.2095 (0.0679) *** 

0.5523 (0.0135) *** 

 

0.9476 (0.0835) *** 

-0.1602 (0.0152) *** 

0.8621 (0.0631) * 
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o
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ti
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ty
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0.0002 (6.6 E-06)** 

 

 

 

 

 

 

 

0.2929 (0.0213)** 

 

 

 

 

0.0069 (0.0004) *** 

0.9280 (0.1381) *** 

0.0172 (0.0015) *** 

 

-0.5525 (0.1419) *** 

-2.4196 (0.1665) *** 

-1.5026 (0.1658) *** 

 

 

0.0327 (0.0037) *** 

0.8364 (0.0839) *** 

0.0034 (0.0012) ***  

 

0.0379 (0.0052) *** 
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-0.8415 (1.8343)  

1.9922 (1.3744)* 

 

     

        1.8266 (0.3596)***    

          1.7719 (0.4111) *** 

        

  -1.2654 (0.6587)** 

      -6.7238 (0.9363) *** 

 

  

  0.3133 (0.144)** 

  -1.3762 (0.6081)** 

     

      -0.3098 (0.1442)** 

     -0.4713 (0.1847)*** 

 

       1.6177 (0.4897) ***  

-0.2895 (0.5991)  

lgl 

N 

Τ 

-975.167 

931 

-195.918109 

931 

12 

Misspecification Tests 

Q(5) 

Q(10) 

Q(15) 

Q(20) 

Q(30) 

5.426 

10.125 

16.464 

20.754 

 41.736* 

3.315  
8.736  

12.197  
19.532  
28.523  

         Notes :  -* Significant at the 10% level; - ** Significant at 5% level; - ***  Significant at 1% level;   

        - Standard errors are displayed as   (.); lgl is the log-likelihood value; N is number of observations. 

 

From table 3, the state 1 is characterized by increasing positive returns ( δ
(1)

 are both 

significantly positive) whereas the state 3 delivers decreasing negative returns ( δ
(3)

 are both 

significantly negative). The conditional return in state 2 is weakly negative ( = -0.6733) which 

increases with duration (δ
(2)

 = 0.5523). Fig 2.1 plots the conditional return in different states against 

duration
11

. The difference in returns across different states is clearly pronounced. In particular, state 2 is 

characterized by intermediate levels of return. By taking into account the conditional volatility in states, we 

found that different states are associated with positive variance (  and  are significantly 

positive). Specially, state 2 has higher volatility ( than other 

states( . When the conditional volatility is dependent on duration, 

the volatility in all three states decreases over time. Fig 2.2 plots the conditional volatility in states as 

duration raises. The three states show a negative dependence of the conditional volatility in states as 

duration increases. We found clearly empirical evidence of states with different features in terms of mean 

return and volatility by applying the three-state DD-MSAR-GARCH-M model to TUNINDEX index 

returns. State 1 exhibits increasing high returns and decreasing positive volatility while state 3 is 

                                                 
11 Note that the memory  of duration dependence for the three-state DD-MS-GARCH-M model was determined to be 

12. 
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characterized by decreasing low returns and decreasing positive volatility. State 2 is increasing weakly 

negative-return and decreasing positive-volatility state. 

 

 

 

 

 

 

 

 

Figure 2. Conditional Return and Conditional Volatility from Three-state DD-MSAR-GARCH-M 

Model  
 

The three-state model also accounts for the duration dependence in risk-return relationship (i.e. risk-return 

trade-off). The evolution of the risk-return trade-off from the three-sate model is illustrated in figure 3.  

 

 

 

 

Figure 2. Conditional Return and Conditional Volatility from Three-state DD-MSAR-GARCH-M Model 

 

 

Again, the relationship between risk and return is neither stable over time nor linear (e.g. Lo, 2004). From 

table 4, the parameters  (i = 1,2,3) which refer to the risk-return trade-off are all significantly different 

from 0 (resp. equal to 0.9476,-0.1602 and 0.8621 for bull, bear and normal states). The risk-return trade-off 

increases (resp. decreases) with the length of time spent in the states 1 and 2 (resp. the state 3).  

 

  
Figure 3. Risk-Return Trade-off in States 1, 2 and 3 

 

Looking thereafter at the results for the duration-dependent transition probabilities, we find that differences 

in the sign, amplitude and level of significance of and  lead us to different interpretations. The 

implications for transition dynamics between states are summarized in figure 4. This shows how the 

probability of moving from one state to another as duration raises. Three plots in figure 4, i.e. Fig 4.1, 4.5, 
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4.9, refer to persistence in the states 1, 2 and 3, respectively. In contrast, the other six plots illustrate the 

migration from one state to another. 

 
                          Figure 4. Three-state DD-MS-GARCH-M Model : Transition Probabilities  

 

At the first sight, we note that the each curve‟s shape is either increasing or decreasing according to the age 

of regime (expressed in weeks). The nonlinear behavior in the transition probabilities displays a priori the 

importance of the length of time spent in the different market states. As plotted in figures 4.1, 4.2 and 4.3, 

during the first week, the state 1 seems generally to persist or migrate to the states 1 and 2 with respective 

probabilities of about 0.3, 0.55 and 0.15. Nonetheless, the probability of staying in the state 1 increases to 

reach about 0.45 during the first four weeks. Beyond this period, the persistence of the state 1 diminishes 

gradually as duration increases. Fig 4.2 which depicts the decay of migration from the state 1 to the state 2 

shows the decline of chance to entry in the state 2. As a matter of fact, the probability of moving from the 

state 1 to the state 2 is equal to zero at the end of the fourth week. On the other side, the longer the duration 

the higher is the probability of migration from the state 1 to the state 3 (Fig 4.3).  

 

The situation is quite different when the market is in state 2. That is, it appears to be about 40% likely to 

persist and 60% to migrate to the state 1 at the first week. However, the probability of staying in the state 2 

declines as duration increases (Fig 4.5). From Fig 4.6, the migration from the state 2 to the state 3 is almost 

unlikely.  

 

When the Tunisian stock market is in the state 3 the probability of moving from the state 3 to the state 1 

reaches about 50% during the first five weeks (Fig 4.7). Beyond the first three weeks, the probability of 

transition from the state 3 to the state 1 decreases with duration. As a matter of fact, Fig 4.9 shows clearly 

this evidence. Staying into the state 3 seems more pronounced as duration increases. Likewise, Fig 4.8 

which illustrates the migration from the state 3 to the state 2 displays the stock market rally during the 

second week. Nevertheless, this situation does not persist as duration increases. On average, the stock 

market spent 50% of time in the state 1 and 5% in the state 3. The unconditional probabilities of the states 

1, 2 and 3 are 50%, 45% and 5%, respectively. In fine, these are the unconditional probabilities for states 1, 

2 and 3, i.e.   
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Turning Index for Probabilistic Lecture of Tunisian Stock Market Cycle 

Apart from the duration-dependence and nonlinearity issues discussed above, the three-state model offers 

mainly the bases for a probabilistic study of the Tunisian stock market cycle. This allows us to highlight the 

cyclical fluctuations of TUNINDEX index while tracing the paths according to which returns chronicles is 

described by a succession of downward, upward or no trend phases. Recall that the dating algorithm (rules-

based approach) developed by Bry and Boschan (1971) and regime-switching models attempt both to 

identify economically significant regimes. Our DD()-MS(3)-AR(2)-GARCH-M(1,1) model-based 

procedure is implemented using again weekly TUNINDEX stock index data for 07 January 1998 through 

29 March 2013.   

 

Like Bellone et al. (2005), the estimation of smoothed probability allows us to construct an indicator which 

varies between -10% and +10%. This indicator, so-called turning indicator (or turning index), is computed 

as the difference between the smoothed probabilities of being in the bull and bear states
12

.  

 

 
Figure 5. Smoothed State Probabilities: The Three-State Model for Stock Returns 

from 31/12/2009 to 29/03/2013 

 Figure 6. Turning Index of Tunisian Stock Market Cycle
13

 from 31/12/2009 to 29/03/2013 

 

                                                 
12 Formally, we propose Turning Index (TIt) is given as follows : TIt = 10 * ( ). 

where  represent the smoothed probabilities. Each observation at time t is conferred to 

particular regime i if   Thus,  is the probability of 

being in the bull state whereas ) is the probability of being in the bear state. 
13 For a better legibility of the graph, we restrict the presentation to last four years: 2010-2011-2012-2013 (i.e. 229 

observations).  
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Figure 5 plots the state probabilities for the three-state DD-MS-GARCH-M model while figure 6 illustrates 

the evolution of turning index as well as TUNINDEX stock index weekly return during 07/01/1998-

29/03/2013. According to our turning index, belonging to the bull state (resp. bear state) is indicated by 

values greater than 5% (resp. lower than -5%); the values between -5% and 5% referred to the normal 

state
14

. By applying this rule, we can decide on the different market states in a probabilistic way throughout 

the observation period. 

 

The relevance of this approach seems to be well documented from the synchronization, as can be seen from 

figures 5 and 6, between the values of the turning index on the one hand and the values of TUNINDEX 

index return on the other hand. In particular, our proposed index return is well-adapted to account for 

extremes events. So, for the date of January 14, 2011, the turning index recorded a value of -10%, 

indicating an exceptional fall of TUNINDEX index (about -11%) due to events related to the Tunisians‟ 

uprising against the ousted president. Likewise, at February 25, 2011, the turning index value of about 10% 

accounts for a second important drop of TUNINDEX index (equals about 9.30%). In this respect, the stock 

market authorities were forced to suspend the trading activity in order to deal with this crisis situation. 

Moreover, the turning index was dropped during the day of February 06, 2013 (the third dashed line) to 

highlight the distress in the Tunisian stock market following the news of opposition leader Chokri Belaid‟s 

assassination. 

 

Concluding Remarks 
 

In this paper, we proposed a probabilistic lecture of Tunisian stock market cycle based on turning index 

from the estimation of three-state model. In this respect, we compared three different models: the single-

regime model, the two-state DD-MSAR-GARCH-M model (M2) and three-state DD-MSAR-GARCH-M 

model (M3) using information criteria, MSC criterion and Likelihood ratio test. Results point to a three-

state specification for the weekly return series. 

 

Estimates results suggest that the three-state model is accordance with the interpretations often suggested in 

the bull and bear literature (e.g. Chauvet and Potter, 2000; Maheu and McCurdy, 2000). As highlighted 

previously, the state 1 is characterized by increasing positive returns whereas the state 2 delivers decreasing 

negative returns. According to the Chauvet and Potter (2000)‟s definition
15

, we can now qualify the state 1 

as bull state while the state 2 is the bear state. The state 3 is a „regime of center‟ characterized by 

intermediate levels of return. The normal market label could refer to state 3.  

 

To sum up, the main empirical facts established by this paper can be described succinctly. The fluctuations 

of the Tunisian stock market should be thought of as having three phases rather two: speculative excess 

phase, normal phase and high-growth recovery period following crash. 

 

The risk-return trade-off increases (resp. decreases) with the length of time spent in the states 1 and 2 (resp. 

state 3). This evidence reflects necessarily the investors‟ changing risk attitude with the amount of time 

spent (i.e. duration) in a particular market state. During decreasing positive-volatility state (state 1), 

investors appreciate the low volatility and become more risk takers implying the increase of their demand 

for the shares. Because the relationship between risk and return increases over time in state 2, we still have 

risk preference behavior in the stock market. In contrast, state 3 which characterized by high volatility 

implies the smaller holding of risky assets because investors are risk averse. 

By focusing on the duration-dependent transition probabilities, the three-model offers new substantive 

insights about states. Starting from the state 1, which provides very attractive returns, we highlight the three 

                                                 
14 The choice of the two limits of -5% and +5% is not arbitrary. These values are obtained from the optimal binning 

method which divides a variable into small number of intervals (or bins) with respect to a categorical guide variable. 
15According to Chauvet and Potter (2000), the bull market (resp. bear market) corresponds to periods of generally 

increasing (resp. decreasing) market prices. 
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different ways that the stock market can end up state 1. Most of the time, the speculative excess caused by 

the willingness of investors to profit from the short term fluctuations in the stock market and pursue the 

abnormal returns lead to staying in state 1. As we have seen in Fig 4.1, the speculative movement in the 

stock market which spent only about three weeks is followed by the fall in stock prices. Fig 4.3 illustrates 

clearly this evidence. The trend reversal which is change in the direction of the stock market (from state 2 

to state 1) also allows to achieve the state 1. Two foreseeable factors are behind the trend reversal in the 

stock market. The mimic attraction of large number of investors leads to the herding behavior implying the 

moving to state 1. Here it is important to note that the desire to imitate observed decisions of others 

investors calls into question the speed of the information diffusion in the stock market and the investors‟ 

processing capacity for new information. Another possible factor for the swing from state 2 to state 1 is the 

momentum effect or positive feedback trading in the stock market. Once investors observe an acceleration 

in stock price by using generally the technical analysis, they become more optimist and overconfident and 

attempt to increase their stock investment turning into buying panics. State 2 thus seems to be a transitory 

phase which reflects the natural evolution of Tunisian stock market. 

 

Fig 4.7 provides us another piece of evidence that the stock market tends to quickly bounce back up 

following the downturn. In the same way as in the business cycle, contraction in the stock market activity is 

generally succeeded by relatively short period of very high growth. As matter of fact, the volatility in state 

3 is high during the first week. As duration increases, the bounceback feature does not persist and the 

selling panic to avoid losses pushes down the stock prices. As a result, the stock market plunges in the 

crisis situation (i.e. crash). Therefore, state 2 encompasses two subphases: first a recovery of the stock 

market to increasing high-return state (state 1) and then a period of the stock prices collapse.  

 

Finally, we propose a probabilistic index based on the smoothed probabilities of the three-state model to 

characterize the different Tunisian market cycle from 31/12/2009 to 29/03/2013. Results emphasize the 

synchronization between the values of the turning index and the values of TUNINDEX index return. Our 

turning index also allows to highlight the extreme events. 

 

Appendix 

 

All the parameters of the model described in section 1 are jointly estimated through the maximum 

likelihood method. The likelihood function itself is evaluated recursively using formula to that in Hamilton 

(1989) and Kim (1994). The discussion below is a Durland and McCurdy (1994), and Maheu and McCurdy 

(2000) procedure generalisation to estimate a three-state Duration Dependent Markov Switching model 

((DDMS-3). 

 

Given a three-state l-lag model with two sates variables, S and D, we specifically define the N-states vector 

at time t, t, in this way:  
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Where N=3
l+1

+3(τ-l-1). Let Yt = (Rt, Rt-1,…, R1) denote all observations obtained through date t, and let  

denote the entire parameter set of the model. The input for step t of the filter is the conditional probability 

vector of t (i.e. Pr(t / Yt-1; )), and the output is the full-sample smoother probabilities vector:  

 

 θ;Y/ΣPrΠ
~

Ttt  ; T is the number of the full sample periods. 

The vector of unconditional probabilities of t, t() = Pr(t / Yt; ), is (N x 1) and the associated transition 

matrix, P = Pr(t / t-1), is (N x N). This later is defined as  


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 , 

where:  (i)

1t

(j)

tij Σ/ΣPrP   ; 
(i)

1-t

(j)

t ΣandΣ  are the jth and the ith rows of t  and t-1 respectively. Each 

Pij is constructed from the conditional probabilities in equations (3) and (4) and the (N x N) transition 

matrix can be computed as follows: 

 

 For j = 1, 2. 

 

The basic filter proceeds then as follows:  

 

1. Calculate  

 

Pr(t / Yt-1 ; ) = Pr(t / t-1).Pr(t-1 / Yt-1 ; ). 
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2. Calculate the joint conditional density distribution of Rt and t:  

 

f(Rt, t / Yt-1 ; ) = f(Rt / t, Yt-1 ; )  Pr(t / Yt-1 ; ) 

 

where the symbol  denote element-by-element multiplication, and 
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3. We then have  

 

    )θ;Y/Pr(Σθ,Y,Σ/Rf'θ;Y/Rf 1tt1ttt1tt    

 

 is a (N x 1) vector of ones. 

 

4. The zero-lag smoother can then be obtained from the filter by dividing the relevant elements in (2) the 

scalar in (3): 
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A by-product of the basic filter in (3) is the likelihood function 

 

   



T

1t

1tt θ;Y/RfθL  

 

Based on Hamilton (1994), the model is estimated by setting Pr(1 / Y1 ; ) to equal the unconditional 

probabilities (i.e. we solve the unconditional probabilities  as the solution to P‟ = , subject to ‟ = 1 ;  

is a (N x 1) vector of ones). 

 

The log-likelihood function can be maximised numerically with respect to the parameter vector . In this 

model, the memory of the markov processes is designed by a discrete-value parameter, τ, which can be 

determined using a grid search starting from τmin = l+1 to maximize the log-likelihood function. 

 

5. Ones the parameter vector  is estimated, we can also calculate the full-sample smoother probabilities 

vector. In contrast to t = Pr(t / Yt ; ), which conditions only on information over the interval [1, t], the 

full sample probabilities use information over interval [1, T], so may be defined as 

 θ;Y/ΣPrΠ
~

Ttt  . It is obtained using the following algorithm developed by Kim (1994):  

 

Calculate  

 

              θ;Y/ΣPrθ;Y/ΣPr'Σ/ΣPrθ;Y/ΣPrθ;Y/ΣPrθΠ
~

t1tT1tt1tttTtt    
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Where the sign () denote element-by-element division. The smoothed probabilities can be found by 

iterating on (5) backwards for t = T-1, T-2, …, 1. The starting input for the full-sample smoother, Pr(T / 

YT; ), is obtained from the last iteration of the filter. 
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